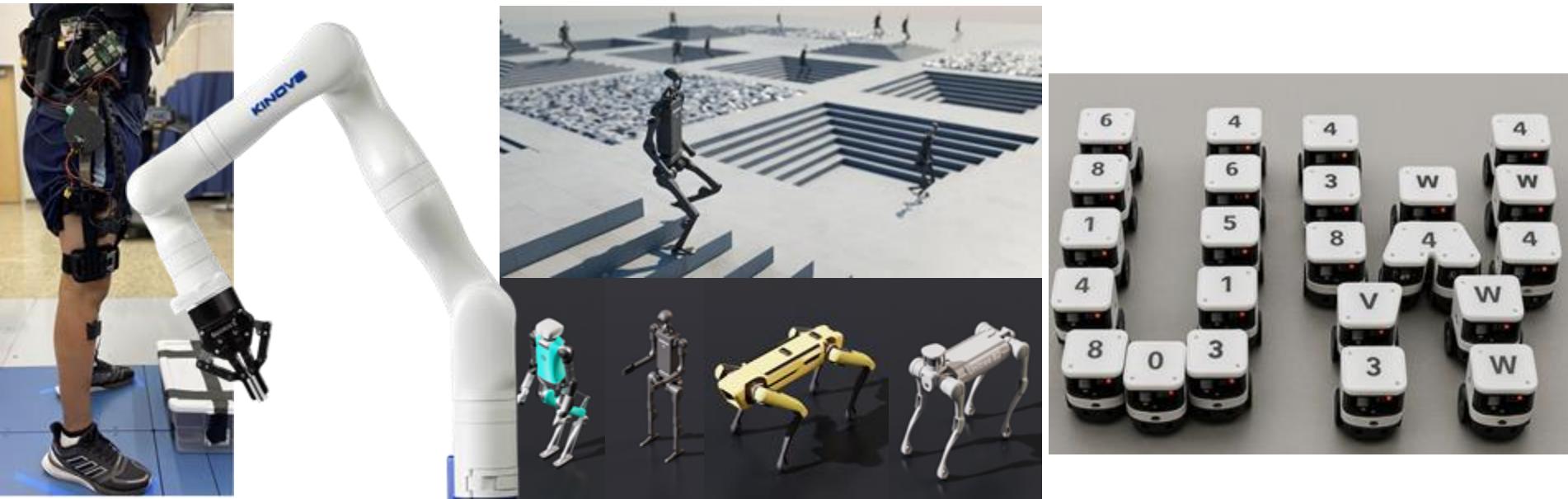


EE 449: Robotics & Controls

Capstone

proposed by **Sam Burden**
w/ Linda Bushnell, Blake Hannaford, Kim Ingraham, Sep Makhsous


Context

- Currently*, we have three courses in the controls / robotics area:
 - 347: Introduction to Robotics
 - 447: Control Systems Analysis
 - 448: Control Systems Lab (* being taught for the first time in Wi26)
- In the past (10+ years ago), we had 449 (Control Systems Capstone), but this was merged into ENGINE
- Students regularly express interest in continuing their education in this pathway, and have been frustrated at the lack of options
- Department recently awarded a course development grant to recreate 449 as a Robotics & Controls Capstone, leading to today's proposal

Proposal: EE 449 (Robotics & Controls Capstone)

Goals: To provide students with engineering design experience with robots including team dynamics, project management, real-world considerations, and technical communication. Student teams design, build, and test robot hardware that involves feedback in a fundamental way. Builds on background knowledge in control systems, programming, circuits, and fabrication. The final product demonstrates technical proficiency but also a nuanced understanding of ethical, societal, and environmental impacts.

Prerequisites: 447 (Control Systems Analysis) but *not* 448 (Control Systems Lab)

Research and Development Project Report Guide

Prof. Robert B. Darling

**Dept. of Electrical and Computer Engineering, Box 352500
University of Washington
Seattle, Washington 98195-2500 U.S.A.**

Proposal: EE 449 (Robotics & Controls Capstone)

Topics:

- *Project management*, including a Gantt chart detailing deliverables.
- *Product requirements*, including an assessment of the business rationale and technical feasibility.
- *Real-world constraints*, including economic, environmental, and societal.
- *Engineering standards*, including safety, environmental, communication, physical.
- *System requirements*, including mechanical, communication, control, computation, software, data, interface, and safety.
- *Prototyping*, including design, fabrication, assembly, and test.
- *Experimentation*, including hypothesis testing, outcome measures, and uncertainty.
- *Real-world consequences*, including ethics, economics, environment, and society.

Proposal: EE 449 (Robotics & Controls Capstone)

Learning objectives: At the end of this course, students will be able to:

- *Manage* a 10-week project including a timeline with many deliverables.
- *Manage* team dynamics including roles and responsibilities, conflicts, and equitable workloads.
- *Construct* testable hypotheses about the outcome of simulation and hardware experiments.
- *Interpret* the result of experiments with respect to a prototype's design.
- *Compare* candidate designs on the basis of their technical and societal merits.
- *Assemble* hardware and software components into a functional robot.
- *Present* project outcomes in written and oral communication.

Proposal: EE 449 (Robotics & Controls Capstone)

Grading: The grade is determined from four main elements

- Meetings and project management: 20%
 - ...
- Project Report: 40%
 - ...
- Documentation on course wiki: 20%
 - ...
- Demonstration: 20%
 - ...

ABET outcomes

- (1) *An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics. (H)*
- (2) *An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. (H)*
- (3) *An ability to communicate effectively with a range of audiences. (H)*
- (4) *An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts. (H)*
- (5) *An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives. (H)*
- (6) *An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions (H)*
- (7) *An ability to acquire and apply new knowledge as needed, using appropriate learning strategies. (M)*