Deep Learning for Big Visual Data

Prerequisite: graduate standing, prefer with background on image processing, computer vision and linear algebra, statistical data analysis

Grading: 5 biweekly Deep Learning Projects 20%/each

- Introduction and Lab Tutorial (1 week)
 - Machine Learning Paradigms
 - Visual Data and Features
 - Distance Measure of Visual Features
 - Machine Learning Performance Metrics
 - Tutorial Use of GPU and the Deep Learning Language and Platforms (Python, Scikit-Learn, Colab, Pytorch)

- Traditional Machine Learning Techniques (1 week)
 - Unsupervised Learning
 - K-Mean Clustering
 - Gaussian Mixture Model
 - Mean Shift Segmentation
 - Normalized Cut Segmentation
 - Supervised Learning
 - Classification Trees and Random Forest
 - Support Vector Machine
 - Distance Metric Learning

- From Multilayer Perceptron (MLP) to Convolution Neural Network (CNN) (1 week)
 - Multilayer Perceptron and Backpropagation Learning
 - From LeNet to AlexNet: the Use of convolution kernels
 - CNN Supervised Classification for Image Recognition
 - CNN Supervised Regression for Autonomous Driving
- CNN Reinforcement Learning for AlphaGo Game

- **CNN for Generative Adversarial Network (GAN) (0.5 week)**
 - Unsupervised Data Generation
 - Training of GANs
 - Conditional GANs
 - Style Mixing GANs
 - Cycle Consistent GANs

- **Few Shot Learning and Open-Set Long-Tailed Recognition (0.5 week)**
 - Long-Tailed Recognition and Open-Set Recognition
 - Few Shot Learning for Rare Data Classes
 - Long-Tailed Recognition for Imbalanced Data
 - Open-Set and Long-Tailed Recognition (OLTR)

- **Deep Learning for Detection and Segmentation (1.5 week)**
 - Traditional Face Detection and Human/Object Detection
 - Two-Stage CNN Detectors: R-CNN, Fast R-CNN, Faster R-CNN, Cascade R-CNN
 - One-Stage CNN Detectors: SSD, Yolo, RetinaNet
 - CNN for Semantic and Instance Segmentation

- **Transfer Learning and Domain Adaptation (DA) in Deep Learning (0.5 week)**
 - DA via Subspace Alignment and Backpropagation
 - Deep Domain Adaptation
 - Adversarial based DA for Classification and Segmentation
 - DA for Object Detection

- **Deep Learning for Image Related Applications (1 week)**
 - CNN-based Face detection
 - Eigenface/Fisherface and LBP based Traditional Face Recognition
 - CNNs for Face Identification and Verification
 - Query Learning for Fine Grained Fish Species Identification
- Image based Depth Estimation
- 2D Human Pose Estimation
- Medical Image Applications

- **Deep Learning for Radar Related Applications (0.5 week)**
 - Radar Signals and Characteristics
 - Radar Object Classification
 - Radar Object Detection
 - Radar Object Annotations and Cross-Modality Training

- **Deep Learning for Point Cloud Related Applications (0.5 week)**
 - Rich 3D Representations
 - Feature Extraction from Point Clouds
 - 3D Object Classifications
 - 3D Object Detection from Point Clouds

- **Deep Learning for Video Related Applications (1 week)**
 - Multiple Object Tracking (MOT)
 - Multiple Object Tracking and Segmentation
 - Ego-Motion Estimation of Moving Cameras
 - 3D Human Pose Estimation

- **Recurrent and Graph Neural Networks (1 week)**
 - Recurrent Neural Networks (RNNs) and Image Captioning
 - Hidden Markov Models (HMMs) and Action Recognition
 - Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU)
 - LSTM for MOT
 - Graph Convolution Networks (GNNs) and Applications